

AUGMENTED REALITY MECHANICAL
DESIGN SOLUTION

FINAL REPORT

Team Number sdmay18-02
Client Ms. Deeksha Juneja, Founder, E.S.A.R.C. L.L.C. (Augmentae)
Advisers Dr. Thomas Daniels

Team Members Bhimesh Chauhan – Team Facilitator, Backend & Data Roles
and Roles Cal-Van Vert – Data/Pipelining Engineer
 Lucas Ince – Web Application Back End and Database
 Ryan Luckinbill – Web Application Front End and Database

Vaibhav Malhotra – Documentation Lead, Backend Developer

Team Email sdmay18-02@iastate.edu
Team Website http://sdmay18-02.sd.ece.iastate.edu/

Revised: April 23, 2018

Table of Content
Table of Content 1

Project Design 3
Problem Statement and Solution 3
Functional Requirements 4
Non Functional Requirements 4
Resource Requirements 5
Risk Identification and Mitigation 5
Functional Decomposition 5
Mobile App UI Design 6
Web App UI Design 8
API Design 9

Implementation 11
STL Parser 11
Web Application Implementation 11
AR Implementation 12

CAD design and Model 12
3D Matrix and Space Model 13
Stabilizing the design 15
Rendering Process 15
Visual SLAM Algorithm 17

Web - Mobile Application Communication - 19

Testing 20
Unit Testing 20
Validation Testing 21
Integration Testing 21
Testing Results 21

Future Steps 22

Appendix I : Operation Manual 23
Configuration 23
Commenting 23
Updates 23
Create / Request Project 23

Appendix II : Project Changes 24

1

Appendix III : Challenges 24
Algorithmic Limitation 24
File Size Support 25
AWS Issues 25

2

1. Project Design
1.1. Problem Statement and Solution

The augmented reality is one of the leading features in the
Mixed Reality industry which has been designed only for
entertainment industry or gaming industry. The goal of this
project is to let designers showcase their 3D or CAD models to
their clients in an augmented reality setup. Designers can
achieve this task by uploading their current CAD model to a
web application which can later be downloaded and viewed
through an augmented reality camera of their android mobile
phone. The clients can then interact with the model and provide
feedback to the designers.

The overview of the design process / application architecture
can be stated as follows:

3

1.2. Functional Requirements
● CAD designers should be able login to their account on

the web app
● CAD designers should be able to upload CAD files from

the web app to the AWS server.
● CAD designers should be able to add a client account to

the current models.
● Clients should be able to login to their account on their

mobile device and web app.
● The mobile app should be able to fetch the CAD models

from AWS according to the user account.
● Clients should be able to view their requested CAD

models from the mobile app.
● Clients should be able to view project on web

1.3. Non Functional Requirements

● Web and mobile apps should be easy to use and intuitive.
● The web app should not have any dead web pages.
● CAD models should be able to be uploaded from the web

app successfully to the AWS.
● The mobile app provides an optional payment processing

feature.
● The mobile app should not crash while rendering the CAD

models.
● Mobile app is available for Android.

4

1.4. Resource Requirements

Both hardware and software resources are required to develop

 and test for this project. We used our own mobile devices to test
the CAD model rendering and the mobile app’s user interface
Design. For software, we used the Android Studio SDK and
notepad++ to build the mobile app and the web app
respectively. To store the user accounts and CAD model files
online, we decided to use the Amazon Web Services as our

 backend storage and server.

1.5. Risk Identification and Mitigation

To mitigate the potential risks we may encounter while working
on the project, we held meetings throughout the whole senior
design semester and used a chat app to communicate with
each other. To identify any possible problems, we did many
testings while developing our mobile and web app from time to
time.

1.6. Functional Decomposition

Our product has 3 main parts. The Mobile App, the database,
and the Web App. The Web Application is used as a space
where the developers who are working on their STL files can
receive updates on the project and view important information
such as deadlines, the budget, and the previous iteration of the
STL file from the database. However, the main use of the web
application is to upload new STL files that get pushed to the

5

database. The database houses all information about a project,
a company, and the STL files. The last part of the project is the
mobile app. The mobile app is able to receive the information
from the database and render the STL file for the client to see.

1.7. Mobile App UI Design
To make our mobile app development easier, we used the
default template that can be found in the Android Studio SDK.
The design is simple enough by default.

The mobile app has a navigation bar that can direct users to
a different page. The user should be able to get to their desire
page correctly as the pages are relatable based on their page
titles and icons.

6

This homepage should be able to show projects that the user is
connected to with an image and a project name. User can add
or request a project by selecting the “Add project” icon.

This is the optional payment page that is not fully implemented
yet.

7

1.8. Web App UI Design

The UI design came from a simplistic idea and was meant to
focus on simple functionality and basic use.

The Login page is designed to serve to serve as an access
point to your projects and have not unnecessary information.

The projects page lists all of your projects and if you are an
admin lists all the projects of your company. Again a spartan

8

design is to allow you to access your projects without
unnecessary information overwhelming you.

The Project page lists all the information and gives the user all
the verbose information. This page shows a picture of the
current project and allows new file uploading.

1.9. API Design

After looking into the implementation options and already
available API and their limitation we decided to work on creating
our own API which would interface with OPENGL (in case of
android OPENGL|ES library) to render a model in the
application as required by our clients. We looked into various
API’s like EasyAR, OpenAR and ARCore.

Since none of the API’s available would work for our clients we
decided to work on creating our own API to implement a model
view where the CAD models are parsed and rendered
according to various tessellation models as mentioned in the stl
files.

9

The architecture comprises of four main modules with user
display / interaction which sends the actions to our API mapping
to respective OpenGL ES function and in some cases to the
The design model can be represented in the figure as follows:

As we can see in the figure above for the high-level
implementation for the API is set of functions that call the
respective OpenGL Embedded Systems functions which are
wrapped by OpenGL methods. In order to create a native
application it was important for us to be able to do some
processing for unsupported devices on a lower language level
to be handled by a the API running on top of it.

We created the API in such a way to be able to provide
maximum device support to the client and also to be able to
reduce the number of API calls throughout the lifecycle of the
application.

With this API our aim was to provide a scalable and sustainable
application which our clients could build upon in the later
phases of the product development.

10

2. Implementation
2.1. STL Parser

STL parser is one of the most important feature in our
application as it parses obj and stl type and displays it on the
phone’s camera. We used an Android library to which helped us
to implement a parser. The parser we implemented can
successfully parse an ASCII or binary stl file. The parser then
sends the coordinates and the dimensions to the graphics
renderer which has been implemented in OpenGL which will in
turn process the coordinates and render the model.

2.2. Web Application Implementation

For our web application, we started off basing our application
around the Amazon Web Service’s database and elastic
beanstalk web application. We have 3 parts to our web
application; the database, the front end, and the back end. For
a good part of the semester, we had our database running off of
AWS and were using elastic beanstalk for our web application.
However, after a few issues with student credits expiring within
the last few weeks, we decided to host the database locally and
not use AWS for our web application. Instead, the front end of
our web application is all written out of html and css and also
hosted locally. We have a login page which then directs the
user to a list of their projects. Each project page receives the
project’s data from the database and displays it on the page.
This page displays the current file and also allows for an upload
of a new file. Our backend is php code which connects the html

11

pages with the data from our database using phtml links. This
allows for the logic of php to be used with the html of the
webpage and fill it with information from the database with
standard SQL queries. All three of these together work in
unison to receive data from the database and display it to the
user.

2.3. AR Implementation

AR Implementation of the Application was one of the most
challenging aspects of the project. This implementation was the
backbone of the application and it was one of the most
important criteria of fulfillment for the client’s goals. We started
by looking into various available APIs for AR in CAD design and
graphics rendering. However, while implementing many of
those libraries, we observed that it limited us in many other
aspects that were important to us in terms of device support,
tessellation etc. We therefore decided to create our own API
that would be native to ARMD’s application and interface with
OpenGL-ES / OpenGL library.

2.3.1. CAD design and Model

The CAD design and Modelling was an important aspect of the
AR rendering on the mobile systems, as we found that
rendering complex models (polygon rendering) would be taxing
on the phones battery life and power management and would
crash our application. We therefore decided to create a parser
that would parse any file and convert it into a triangular
coordinate system. In this way we would lose some quality and
still be able to render the basic and most minimally required
aspects of the application. We later on decided to render

12

complex models that would require a broader set of function to
be able to interface via laptop through an HTTP request and
later through USB cable.

2.3.2. 3D Matrix and Space Model

Creating a 3D mesh to render models on was a challenging
aspect of the project. Without any reference to create the
models we were not able to render model on “true AR” rather
than just on the camera view which made relative motion with
the model difficult to implement.

To adapt to the model we decided to have a model made out of
triangles in space that would then adapt to the coordinates
given on for a specific model. For instance, to make a sphere
we would first create a model of mesh in space and then adjust
each model to make a sphere. As shown in the figure below we
were able to adapt the cube mesh model to the sphere model.

We therefore parse each of the coordinate of the cube mesh
(cube mesh is larger than the sphere mesh). We adjust all the
coordinates to the one specified in our file considering the

13

center cube as the origin. We then drop all the coordinates that
were not needed for the adjustment.

We tested this code with various other models which resulted in
making the model very obscure, which was not acceptable for
the project. For instance a wave cad model would end up
looking something like this which was not something our client
was aiming for.

We therefore moved on to a different algorithm to process the
models based on the coordinates given in the stl file. We decide
to preprocess the file on submission, stripping the meta data,
which was redundant for the specific account and then render
the model according to the triangle coordinates permissible by
the embedded system version of OpenGL. This helped us in
making the process more accurate and close to result we
expected as shown below:

14

2.3.3. Stabilizing the design

The next biggest challenge that we faced in designing the
model and rendering is stabilizing it in the space and not merely
by rendering it on the camera background. This was really
important for the client in order to be able to visualize and
interact with the models and be able to comment on specific
parts of the models and design. To do this we needed to
stabilize the design on a coordinate axis and maintain it there.
While we could in general use markers and QR codes to render
on the model, our client wanted us to attempt to render model in
space with coordinate system selected by client before
rendering. This was especially important to make the app easy
to use. This was done using marker as explained in the
following sections.

2.3.4. Rendering Process

The rendering process is very straightforward using methods
from the OpenGL and passing the coordinates to render and
making models. Model shaders rendering is done as shown:

int shaderProgramId = GLES20.glCreateProgram();
GLES20.glAttachShader(shaderProgramId, vertexShader);
GLES20.glAttachShader(shaderProgramId, fragmentShader);
GLES20.glLinkProgram(shaderProgramId);

The shaders given in stl files helps us determine the account of
the user and context to render the shaders. There are two
different types of shaders that we are expecting to render
model. Vertex shader helps us render the vertices of the

15

models starting from one, ending at another. Second, we render
a single vertex from the vertex stream and generate a single
vertex to output vertex stream. The sample code to execute
shaders can be seen below:

int shader;
shader = GLES20.glCreateShader(type);
GLES20.glShaderSource(shader, shaderSrc);
GLES20.glCompileShader(shader);
return shader;

As shown above the code compiles the type of shader given in
the stl headers. This code portion creates an empty shader and
then assigns the value as input stream from the program and
compiles and renders the object as a whole. The following
describes the architecture in much detail.

16

As shown in the flow diagram above, we see the lifecycle
process of each parts design and rendering it on the AR. We
collect the rendering data from the stl parsed file and pass it to
vertex shader as shown in code before and then tessellation
process helps in creating the vertices and then geometric
shaders adds the material information on the vertices and
rasterize by breaking it into individual fragments for continuous
stream rendering using fragment shader which compiles into
individual compound object. This in the end helps us view
object as it is rendered in the virtualized environment.

2.3.5. Visual SLAM Algorithm

While rendering the model onto camera the requirement was to
be able to render it on a 3D axis in space without the use of any
code or any physical stimulus. This was accomplished using the
marker system used in Simultaneous Localisation and Mapping
algorithm. SLAM as the name suggest tries to simultaneously
localize (i.e. find position or orientation of) some sensor with
respect to some sensor or surroundings while mapping the
environment. There are many other ways to map an
environment known to us but not all of them are constituted as
SLAM. For example marker based tracking is not SLAM
because the marker image is known beforehand. The challenge
here is to recover both environment map and the positions of
camera at the same time.

The important difference between SLAM and other similar
techniques is that it operates in real time. This mean that
processing on each frame must be finished before the next one

17

arrives, this makes pose of the camera available immediately
and not as a result of post stage processing.

The main concept in understanding of SLAM is that it tracks a
set of points identified through successive camera frames and
using this to triangulate the 3D position, while it simultaneously
calculates camera pose using the estimated point location. This
helped us develop tracking of rendering model with moving
camera giving user an object like interaction with the cad
models. Due to these factors even with single camera it is
possible to recover the position and structure with high
accuracy upto a particular factor.

Another important factor for determining the position previously
held by the object is by relocalisation, which is able to cope up
with temporary poor tracking performance, which could cause
the system to fail. Tracking therefore resumes even after
changing the position and view of camera. Code and figure
below shows SLAM algorithm creating axis to position object
on.

Trackable trackable = trackingResult.getTrackable(0);
texturedCube.setTransform(trackable.getPoseMatrix());
texturedCube.setTranslate(0, 0, -0.0005f);
texturedCube.setScale(0.4f, 0.4f, 0.001f);
texturedCube.setProjectionMatrix(projectionMatrix);
texturedCube.draw();

18

2.4. Web - Mobile Application Communication -

For our application to work as whole unit, we had to create
REST endpoints for out mobile application to communicate with
the web application. The web application’s main purpose is to
serve as backend unit for the designers where they can upload
their current CAD models for their clients respectively.
Whenever the designers update their STL file, they can upload
it via the web application. When the mobile app is in use, it will
request to pull the most recent STL file from the database. The
mobile application will then parse the file and render it in front of
the phone camera in an augmented reality setup.

19

3. Testing

Our testing process followed the guideline displayed below. In
short, our team built each feature in an isolated environment.
We live tested as we developed and had bi-weekly
demonstrations to our client to gather feedback. Once a feature
was finalized and confirmed by the client, we merged that
feature into a master branch to integration test. Finally, we
demonstrated the integrated features to the client for final
validation and hand over to their team for future steps.

3.1. Unit Testing

The unit testing was done in a TDD way where each unit test
was written to fail and made to succeed eventually. The main
structural code used looked something like this:

TEST(MainLoopExecutesCorrectNumberOfTimes){
 MainLoopState loopState;
 MainLoopUtils::Execute(slamState, 5);
 CHECK_EQUAL(5, slamState.frameCount);
}

There were multiple tests for each unit while rendering,
rasterization, tessellation and rendering. We had separate unit
tests to run on each part individually provided as default model
(waves and rabbit). Each validation was done manually by the
user after rendering.

20

3.2. Validation Testing

Validation testing was done with the clients and demonstration.
We used the comments and concerns provided by the client to
make the necessary changes and discuss challenges in the
project we faced. The follow up meetings were lead by progress
made from the previous suggestion, merged to master
environment and so on.

3.3. Integration Testing

Integration testing was done once the individual models were
imported on to the main environment by installing the
application remote device and checking the edge cases and
then followed by general use. Bug fixes were done once we had
found the errors in the report, we debugged the code to address
the needed change and corrections were sent for approval for
next validation.

3.4. Testing Results

Throughout the process we were able to make significant
progress despite of our restriction and challenges. By getting
tight cycles of feedback from the client we were able to make
progress in terms of developing a scalable and testable
application which could address the needs or be the platform on
which future application could be built and developed.

21

4. Future Steps

The future step that can be done in this project to create a
marketable product is to refine over the model stabilization and
processing of larger files in upwards of 2GB owing to the
bandwidth limitation (while using a cable medium). Also,using a
better algorithm to render the model could help make the
process more efficient. This API is the most basic model on
which one could develop further to provide more features and
cover more devices as the technology in AR/VR progresses.
Next steps could also be in terms of developing application to
be able to do live commenting and updates from the solidworks
application as a plugin that synchronizes every fixed amount of
time. Our team believes that any future work should be
consistent to what we have done throughout the semester and
should be able to carried out in accordance with the standards
set by the client and industry.

22

5. Appendix I : Operation Manual
5.1. Configuration

Configuration of the camera settings are available for users to
do with respect to the resolution they want the objects rendered
in and screen size respectively. Users can also configure the
time they want to be updated about new project.

5.2. Commenting
Commenting on the CAD files was important part of the design
requirement. Users can comment on individual part as a
reference and can be viewed by the client in order specified and
priority set.

5.3. Updates
To update the CAD model in the mobile app, the client has to
pull down on the screen to refresh the models that are available
to view from the designers. The client can then load the model
and interact with it and view it from different angles in an
augmented reality setup.

5.4. Create / Request Project
Clients are able to request new projects from various
companies choosing it from the side menu. Then selecting the
company and then write project details and deadlines to be
discussed on phone or via meeting which can also be
requested via same form.

23

6. Appendix II : Project Changes

In the previous version of this project, our project goal was to
create a software that enable users to design and modify a
CAD model interactively in a HTC Vive’s virtual environment.
We wrote a stl file parser in Python and managed to render a
simple cube on the HTC Vive without the interactive
components. At our previous panel presentation, we were told
that the project is too large of a scale to be our senior design
project and we might not be able to do it in two semesters. After
discussing with Ms. Deeksha, she decided to change our
project to the current project.

7. Appendix III : Challenges
7.1. Algorithmic Limitation

One of the major challenges that we faced while developing the
application was the size limit on data and processing speed of
more complex cad models. This was challenge because many
times after rendering the model it would take some time for our
process to re-render the model if the camera position changed.

To overcome this challenge we took the help of SLAM algorithm
that helped us to simultaneously track the position of the
camera and map the environment. This algorithm helped us
stabilize the model to certain extent. Another challenge we
faced was to fix model at a certain place in the environment
which we did using the re-localization process of the SLAM
algorithm. We had to match each frame and changes in each

24

frame. If the changes were over the acceptable limits we would
know the position has changed. However, sometimes we still
faced issue in identifying the proper marker placed in
environment, especially in dark lighting situation where we had
less data points to rely on.

7.2. File Size Support
Note: Write of overhead size and the data repetition and how to
mitigate with the project info

7.3. AWS Issues
We had a variety of issues setting up and using AWS. One of
the first issues we ran into issues setting up a multi-user AWS
environment. We could not get resources to be shared among
two users. In order to fix this we contacted Amazon for support
and tried to set up group sharing. Neither of these avenues
panned out so we had to go with sharing a single account. In
addition both web developers had issues with Amazon
supposedly charging us for our free accounts. When it
happened to Ryan we moved development over to Lucas’s
account. When he had these uses the website was moved over
to private host by incepost.com.

25

